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Abstract. The statistical mechanics of vulcanized (i.e. permanently randomly crosslinked) 
macromolecular matter can be formulated. using the replica technique, as the n + 0 limit 
of a theory containing n t 1 coupled replicas. Within the framework of a replica-symmetric 
variational mean-held approach this theory describes an equilibrium phase transition, upon 
sufficient vulcanization, from a liquid to an amorphous solid state. We consider a natural 
extension of this framework, which admits the possibility of the spontaneous breaking of replica 
symmetry, and find that-at least ai the mean-field level-replica symmetry appears to remain 
intact. We discuss the physical origin of this absence of replica-symmetry breaking, as well as 
a possible strategy for 3 theoretical refinement that may yield replica-symmetry breaking. 

In a recent letter [ I ]  (see also [2-4]), a statistical mechanical theory bas been presented 
' of the equilibrium phase transition, from the liquid state to the amorphous solid state, that 

macromolecular networks exhibit upon the introduction of a sufficient density of permanent 
random crosslinks (i.e. upon sufficient vulcanization). The central feature of the theory 
presented in [ I ]  is a one-parameter variational hypothesis for the order parameter appropriate 
to the transition at hand, namely, a type of Edwards-Anderson order parameter [5.6] capable 
of detecting the random static density fluctuations that emerge at this solidification transition 
[4,7]. The variational parameter may be regarded as a localization length for the monomers: 
it is infinite in the liquid state and becomes finite, continuously, at the transition. (A closely 
related description of covalently bonded random atomic networks4.e. structural g l a s s e s  
has also recently been developed [SI.) The purpose of the present paper is to extend the 
investigation begun in [l]  by investigating the possibility of the spontaneous breaking of 
replica symmetry (RS) in the equilibrium amorphous solid state of randomly crosslinked 
macromolecular networks and to explore the implications of replica-symmetry breaking 
(RSB) for the structure of the space of equilibrium states. 

This paper is organized as follows. We begin by briefly sketching the replica mean- 
field theory approach to randomly crosslinked macromolecular networks and outline an 
RS variational hypothesis for the order parameter. (The reader is referred to [l], and to 
references therein, for further details.) We then indicate how the variational hypothesis 
may be broadened so as to allow for the spontaneous breaking of RS and, following this, 
we present a specific pattern for breaking the RS. One of the novel aspects of these issues 
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becomes apparent from the recognition that, in the replica approach, randomly crosslinked 
macromolecular networks are described by the n + 0 limit of a theory involving n + 1 
replicas, rather than the usual n replicas [Z]. Next, we examine the consequences of 
interpreting this pattern of RSB in terms of pure equilibrium states and, finally, we examine 
the consequences of implementing this pattern at the one-step level in the specific context of 
a variational mean-field theory of randomly crosslinked macromolecular networks. In fact, 
we shall find that the system does not take advantage of RSB, at least in the form presented 
here. We conclude with a discussion on the physical origin of the absence of RSB shown by 
the present mean-field theory and with a conjecture regarding a more elaborate description 
of randomly crosslinked macromolecular networks that we anticipate might exhibit RSB. 

The system to be considered consists of N macromolecules of arclength L and 
persistence length e moving in a d-dimensional volume V .  The macromolecules are 
labelled by the index i = I ,  . . , , N and the configuration of the system is described 

' by the collection of spatial trajectories { ~ c f s ) ] ~ , ,  where 0 < s < 1. (In other 
words, we measure spatial distances in units proportional to the RMS end-to-end distance 
of a free macromolecule; arclengths in units of the total arclength and energies in units 
such that kBT = 1.) We model the uncrosslinked system using the Edwards Hamiltonian 
[9, IO] and, following Deam and Edwards [Z], adopt a crosslink distribution that reflects the 
correlations present in the uncrosslinked macromolecular liquid, particularly the integrity of 
the macromolecules and the space-filling nature of the typical configurations of the liquid. 
The permanent random crosslinks play the role of quenched random variables: their mean 
density is controlled by the parameter fi2. 

By applying the replica technique and introducing the order-parameter field Q,, we can 
formulate the problem in terms of an effective Hamiltonian j,,{Q) for a single (replicated) 
macromolecule 
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Collections of (n + 1)-fold replicated d-dimensional vectors are denoted by hatted variables; 
e.g. S denotes {CO,  . . . , c"). Angle brackets (. . .):+, denote averaging with respect to the 
(n  + ])-fold replicated Wiener measure for a single (replicated) macromolecule. 

The expectation value (Si). taken with the Boltzmann weight exp(-Ninf,(~)), is 
related to the disorder average of the static density fluctuations 

When at least two of the ( n  + 1)-component vectors i n  d are non-zero, then (Qp) is the 
order parameter that distinguishes between liquid and amorphous solid states, detecting the 
emergence of random static density fluctuations [4]. This order parameter characterizes all 
moments of the distribution of monomer-specific densities, not solely the second moment. A 
mean-field description follows by considering the effective Hamiltonian ( I )  in the stationary- 
point approximation. Then, the disorder-averaged free energy per macromolecule f (relative 
to the free energy of the uncrosslinked liquid) is given by f = lim,,O jn.  

In [ I ] ,  we discussed in detail the RS variational hypothesis 
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where iz = Ikwlz. The variational parameter .$ can be interpreted as a localization 
length: it is infinite i n  the liquid state and finite in the amorphous solid state. The Kronecker- 
delta factor encodes the physical notion that the amorphous solid state is macroscopically 
translationally invariant, despite the microscopic translational symmetry breaking that occurs 
through the emergence of random static density fluctuations. Inter alia, it is shown in [I]  
that, within the context of this hypothesis, a phase transition occurs between the liquid 
and amorphous solid states at a critical value of p', namely, p2 = p: % 1.59. (In recent 
work we have introduced a broader RS variational hypothesis in which the ordered state is 
characterized by a distribution of localization lengths. This more elaborate hypothesis turns 
out to yield a stationary point of the effective Hamiltonian [ 111.) 

To allow for the possibility of RSB, it is natural to generalize the variational hypothesis 
(3) by adopting the form 

with non-negative and with the matrix ? satisfying the constraints that its diagonal 
elements all vanish and that its off-diagonal elements average to zero. i.e. pfl = 0. 
To express the hypothesis in this particular form turns out to be convenient. One should 
regard f as encoding RS information and fa@ as encoding information concerning RSB. 
Related hypotheses have been invoked in the context of systems with n replicas [12]. 

Inserting the variational hypothesis (4) into the effective Hamiltonian (I), expanding 
perturbatively in l=-' and retaining terms to all orders in p, we obtain the mean-field free 
energy (valid for small n )  

where 

* "  
(1  + n)  + nG, = tr( 1 - r)-' ( 6 4  

and where h ( x )  = (e-X - (1 - x ) ] ,  r ( x )  = h ( x )  - (x/2) and i, is the (n + 1) x (n + 1) 
identity matrix. It should be noted that for any RSB pattern in which all replicas remain 
equivalent, such as the one to be discussed below, it can readily be established that F, = 0. 

We now make a specific assumption about the form of the RSB pattern. Consider 
the (1 + n)  x (1 + n)  matrix f .  Partition the ( I  + n )  replicas into (1 + n ) / ( l  + En) 
equivalent groups, each containing (1 + ~ n )  replicas. The parameter E should be regarded 
as interpolating between (1 x 1) and (1 + n )  x (1 + n )  matrices; it characterizes the pattern 
of RSB and satisfies the inequalities 0 < E < 1. Next, to the off-diagonal elements of the 
matrix ? associated with all pairs (01. p )  in the same partition (i.e. for elements of ? in the 
diagonal blocks), assign the value -(I - 6)g; to the elements of f associated with pairs 
(01, p )  in distinct partitions (i.e. for elements of f in the off-diagonal blocks), assign the 
value Eg. (The matrix elements are not independent because of the constraint that their 
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average over the matrix f. is zero.) The parameter g should be regarded as characterizing 
the strength of RSB. As the block size depends explicitly on n, this one-step RSB pattern is 
a slight variant of the Parisi scheme I13,5,61, the variance arising from thc need to explore 
the neighbourhood of ( I  x I )  matrices rather than (0 x 0). This particular scaling of the 
block size ( I  + En) with the number of replicas ( I  + n) is chosen for three reasons: first, 
it leads to a natural interpretation of RSB in terms of the distribution of overlaps between 
pure equilibrium states; second, it leads to the free energy having a sensible n + 0 limit; 
and third, it can be iterated an arbitrary number of times. 

The iterability of the RSB pattern can usefully, if heuristically, be illustrated using the 
language of group theory [14]. Let S, denote the group of permutations of n objects. Then 
the present RSB pattern can be depicted as follows 

P M Goldbart and A Zippelius 

where the symbol on the left-hand side indicates the (permutation aspects of the) order- 
parameter symmetry group in the absence of RSB and the symbol on the right-hand side 
indicates the residual symmetry under the present RSB scheme [Iq. Taking then  + 0 limit 
gives the symmetry-breaking pattern 

SI -? SI6SI (8) 

which shows that the broken symmetry group contains, as a subgroup, a copy of the 
unbroken symmetry group, so that the pattern of symmetry breaking can be iterated 
indefinitely. It should be noted that invoking the Parisi pattern of RSB in its usual form 
(i.e. choosing the block size not to have any explicit dependence on n) does not lead to a 
readily iterable pattern of RSB in  the present context. Iterating the present scheme K times 
corresponds to choosing a sequence of variational parameters 

I = €0 > E l  2 , , . > €k 2 " ' E K  > €K+I = 0 

governing the sequence of block sizes mt = I +<in and a sequence of values 

ro > rl > ...> rk 2 ...rK-l 2 rK (9b) 

for the corresponding elements of the matrix ?, satisfying the constraint 

Let us now turn to the interpretation of RSB. By using the clustering properties of 
expectation values in pure equilibrium states, it can readily be shown [16,5,4] that 

Here, U labels the pure equilibrium states, W O  denotes the normalized Boltzmann weight of 
the state U, (. .)" denotes expectation values taken within the state U ,  
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is the (unsymmetrized [4]) overlap (at wavevectors k and k’) of the pair of states U and U’ 

and the square brackets [. . . I  denote averaging over the distribution of crosslink number and 
positions. Thus, P[kwl(q)  has the meaning of the disorder-averaged Boltzmann-weighted 
distribution of (symmetrized) overlaps (at wavevectors k and k‘) between pairs of pure 
equilibrium states. How to compute this distribution using the replica technique is specified 
on the the right-hand side of equation (lo), in which an average is taken over all equivalent 
stationap points generated by the unbroken symmetry group of the theory. The value of 
the order parameter features via the quantity mi[,, which is defined to be the value of 
S2j when all wavevectors in vanish except the a th  (which equals k) and the Bth (which 
equals k’). 

Distributions of overlaps of more than two pure states can also be considered, leading to 
results similar to those given above for pairs of states. The information necessary to compute 
such distributions is contained in the values of S2i when more than two wavevectors in k are 
non-zeo. In addition, one can consider distributions of overlaps between pure states arising 
from the decomposition of the physical Gibbs ensemble and the analogues of pure states 
arising from the decomposition of the ensemble used to generate the crosslink distribution. 
In situations such as the present one, in which the crosslink-distribution-generating ensemble 
is identical to the physical ensemble, the unbroken symmetry group of the replica theory 
is S,,,. Then, there is no distinction between those overlap distributions involving only 
physical pure states and those also involving their analogues arising from the decomposition 
of the crosslink-distribution-generating ensemble. It would, however, also be of interest to 
consider systems in which the physical and crosslink-distribution-generating ensembles are 
distinct, e.g. because crosslinking is undertaken at a different temperature or in the presence 
of a solvent of different quality. Then, the unbroken symmetry group of the replica theory 
would instead be S. and one should anticipate a distinction between overlap distributions 
involving only physical pure states and those also involving the analogues of pure states 
arising from the decomposition of the crosslink-distribution-generating ensemble. 

Within the context of the variational hypothesis (4), the present pattem of RSB 
(implemented at the one-step level) leads to the overlap distribution 

which evidently is sensible (and yet potentially non-trivial) in the n --t 0 limit and which is 
acceptable as a probability distribution, provided that 0 < E < 1. It should be emphasized 
that the good features mentioned here arise as a consequence of the explicit n-dependence 
conferred upon the sizes of the blocks in the present scheme. If the RSB pattern were 
iterated beyond the one-step level then the distribution would contain more than two delta- 
functions, their weights remaining non-negative but potentially non-trivial by virtue of the 
adopted scaling of the (sequence of) block sizes with n 

RSB can be pictured qualitatively as inducing some dispersion of the overlaps: the overlaps 
of distinct states can be interpreted as yielding larger (mutual) localization lengths than do 
the self-overlaps of states. 

By applying this one-step RSB scheme to the effective Hamiltonian (5). expanding 
perturbatively to second order in p-’ and taking the n + 0 limit (and omitting irrelevant 
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constants), we find that the mean-field free energy f is given by 

(2/d)f= r(p’){lnQ-’+(l  -e )In( l  + J ) l + h ( p Z ) ( l  - ( I - e ) J ( J +  I)-‘)Q 
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+k(FZ){1 - ( I  - € ) J ( J + Z ) ( J +  1)-2}Q2+O(Q3) (14) 

where 

Q-’ = @ ( I  - ( I  - c)g} (W 
J ~ g ( l - ( l - ~ ) g ] - ‘  (1%) 

and where we have exchanged the set of order parameters {F, g, 6) for the set {Q, J ,  6}. For 
r < 0, (i.e. p 2  < I.: FJ 1.59) f has only the trivial stationary point F = 00, corresponding 
to the liquid (i.e. delocalized) state. At 5 = 0 (i.e. p2 = p:) there is a continuous transition 
from the liquid state to an amorphous solid state, in which the monomers are localized, 
having F < CO. For r > 0 (i.e. pz > 1.2) an RS stationary point of f corresponding to 
the amorphous solid state is readily found, at least in the vicinity of the transition (i.e. for 
5 << I), e.g. by setting J to zero and requiring that f be stationary with respect to Q. This 
solution corresponds to the state described in [ I ] ,  

To search for RSB stationary points o f f  in the vicinity of the transition, we first assume 
the power-series expansions in r 

h Q  = Qlr + Q2r2 +... ( 160) 

J = J l r + . . .  (16b) 

with E arbitrary. The conditions that f be stationary with respect to Q and to J then yield 
only one stationary point, an RS stationary point, at which g = 0 (or, equivalently, c = 0 or 
1)  and F-’ ir 6r(I +h-’kr) :  we do not find an RSB stationary point. Next, we consider 
the possibility of a stationary point that corresponds to the situation in which the overlaps 
between all pairs of distinct states vanish but the self-overlaps share a common non-zero 
value. This case also yields an RS solution only, the weight of the putative (zero-valued) 
non-self-overlaps being zero. Finally, we consider the possibility of RSB (also at the one- 
step level) according to the scheme adopted by Seung ef QI [I71 in the specific context of 
supervised learning by neural networks: with this scheme, once again, we do not find an 
RSB stationary pointt. 

Genuine physical networks of randomly crosslinked macromolecules seem, a priori, to 
be likely candidate systems for exhibiting RSB. However, the present calculation appears 
to favour an RS state. We conjecture that the origin of the absence of RSB lies in the 
neglect of the (crosslink-renormalized) excluded-volume interaction, which results from the 
mean-field treatment. Thus, the thermodynamic barriers necessary to delineate between 
distinct pure equilibrium states have been omitted from the theory and RSB is not realized 
at the mean-field level. It would, therefore, be most interesting to enquire whether or not 

t For systems having [he full Snil permutation symmetry. the pattern of RSB considered in 1171 lads to the 
unattractive feature tha1 the probabilistic interpretation of RSB, e.g. as in equation (12). suffers from lhe occurrence 
of negadve weights. 
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the incorporation of interactions-and thus b m i e r s 4 o e s  indeed lead to the spontaneous 
breaking of RS. One strategy for accomplishing this, which is a particularly natural extension 
of the present framework, is to treat the excluded-volume interaction at the Gaussian level, 
following the collective coordinate method of Edwards [181. This entails a somewhat more 
elaborate calculation than that presented here, a calculation on which we intend to report in 
the near future [19]. 
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